	INDIAN SCHOOL AL WADI AL KABIR Worksheet- Vectors and Three-Dimensional Geometry Grade: XII $\mathbf{1 8}^{\text {th }}$ October 2023
1.	If a line makes angles α, β, γ with the positive direction of coordinate axes, then write the value of $\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma$. Ans: -1
2.	Find the angle between the lines $2 x=3 y=-z$ and $6 x=-y=-4 z . \quad$ Ans: $\frac{\pi}{2}$
3.	Write the coordinates of the point which is the reflection of the point $((\alpha, \beta, \gamma)$ in the XZ plane. Ans: $(\alpha,-\beta, \gamma)$
4.	Find the equation of the line passing through origin and (3, -4, 2). Ans: $\frac{x}{3}=\frac{y}{-4}=\frac{z}{2}=1$
5.	If \vec{a} and \vec{b} are unit vectors, then what is the angle between \vec{a} and \vec{b} for which $\vec{a}-\sqrt{2} \vec{b}$. Ans: $\frac{\pi}{4}$
6.	Write the unit vector along the sum of vectors $(2 \hat{\imath}+\hat{\jmath}-2 \hat{k})$ and $\hat{\jmath}+\hat{k}$ on the three axes. Ans: $\frac{1}{3}(2 \hat{i}+2 \hat{j}-\hat{k})$
7.	The scalar product of the vectors $\hat{\imath}+\hat{\jmath}+\hat{k}$ with a unit vector along the sum of the vectors $2 \hat{\imath}+4 \hat{\jmath}-5 \hat{k}$ and $\lambda \hat{\imath}+2 \hat{\jmath}+3 \widehat{k}$ is equal to 1 . Find the value of λ. Ans: 1
8.	If $\overrightarrow{\boldsymbol{a}} \neq 0, \vec{a} \cdot \overrightarrow{\boldsymbol{b}}=\overrightarrow{\boldsymbol{a}} \cdot \overrightarrow{\boldsymbol{c}}$ and $\overrightarrow{\boldsymbol{a}} \times \overrightarrow{\boldsymbol{b}}=\overrightarrow{\boldsymbol{a}} \times \overrightarrow{\boldsymbol{c}}$, then show that $\overrightarrow{\boldsymbol{b}}=\overrightarrow{\boldsymbol{c}}$
9.	Find λ when the projection of $\overrightarrow{\boldsymbol{a}}=\lambda \hat{\imath}+\hat{\jmath}+4 \hat{k}$ on $\overrightarrow{\boldsymbol{b}}=2 \hat{\imath}+6 \hat{\jmath}+3 \hat{k}$ is 4 units. Ans: 5
10.	Show that the four points $\mathrm{A}(4,5,1), \mathrm{B}(0,-1,-1), \mathrm{C}(3,9,4)$ and $\mathrm{D}(-4,4,4)$ are coplanar.
11.	The x coordinate of a point Q on the line joining the points $\mathrm{P}(2,2,1)$ and $\mathrm{R}(5,1,-2)$ is 4 . Find its z coordinate. Ans. -1
12.	Find the value of λ so that the four points A, B, C and D with position vectors $4 \hat{i}+5 \hat{j}+\hat{k},-\hat{j}-\hat{k}, 3 \hat{i}+\lambda \hat{j}+4 \hat{k}$ and $-4 \hat{i}+4 \hat{j}+4 \hat{k}$ respectively are coplanar. Ans: 9
13.	Let $\vec{a}=\hat{\imath}+4 \hat{\jmath}+2 \hat{k}, \vec{b}=3 \hat{\imath}-2 \hat{\jmath}+7 \hat{k}$ and $\vec{c}=2 \hat{\imath}-\hat{\jmath}+4 \hat{k}$. Find a vector \vec{d} which is perpendicular to both \vec{a} and \vec{b} and $\vec{c} \cdot \vec{d}=15$. Ans: $\vec{d}=\left(\frac{5}{3}\right)(32 \hat{\imath}-\hat{\jmath}-14 \hat{k})$.
14.	Two adjacent sides of a parallelogram are $\widehat{2 \imath}-4 \hat{\jmath}-5 \hat{k}$ and $2 \hat{\imath}+2 \hat{\jmath}+3 \hat{k}$. Find the two unit vectors parallel to its diagonals. Using diagonal vectors find the area of the parallelogram. Ans: $2 \sqrt{101}$
15.	Find the angle between the vectors $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$ if $\vec{a}=2 \hat{\imath}-\hat{\jmath}+3 \hat{k}$ and $\vec{b}=3 \hat{\imath}+\hat{\jmath}-2 \hat{k}$ and hence find a vector perpendicular to both $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$. Ans: $\frac{\pi}{2}, 2 \hat{\imath}-26 \hat{\jmath}-10 \hat{k}$

16.	Find the shortest distance between the lines:$\begin{array}{ll} \overrightarrow{\mathrm{r}} & =(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+\hat{\mathrm{k}})+\lambda(\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}}) \text { and } \\ \overrightarrow{\mathrm{r}}=(2 \hat{\mathrm{i}}-\hat{\mathrm{j}}-\hat{\mathrm{k}})+\mu(2 \hat{\mathrm{i}}+\hat{\mathrm{j}}+2 \hat{\mathrm{k}}) & \text { Shortest distance }=\left\|\frac{-9}{3 \sqrt{2}}\right\|=\frac{3 \sqrt{2}}{2} \end{array}$	
17.	Find the shortest distance between the following lines :$\begin{aligned} \overrightarrow{\mathrm{r}} & =(\hat{\mathrm{i}}+2 \hat{j}+3 \hat{k})+\lambda(2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+4 \hat{k}) \\ \overrightarrow{\mathrm{r}} & =(2 \hat{\mathrm{i}}+4 \hat{j}+5 \hat{k})+\mu(4 \hat{i}+6 \hat{j}+8 \hat{k}) \end{aligned}$	
18.	Find the vector and cartesian equations of a line through the point $(1,-1,1)$ and perpendicular to the lines joining the points $(4,3,2)$, $(1,-1,0)$ and $(1,2,-1),(2,1,1)$. Ans: $\frac{x-1}{10}=\frac{y+1}{-4}=\frac{z-1}{-7}, \overrightarrow{\mathrm{r}}-(\hat{i}-\hat{\mathrm{j}}+\hat{\mathrm{k}})+\lambda(10 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}-7 \hat{\mathrm{k}})$	
19.	Find the value of k if the following lines are perpendicular:$\frac{\mathrm{x}+3}{\mathrm{k}-5}=\frac{\mathrm{y}-1}{1}=\frac{5-\mathrm{z}}{-2 \mathrm{k}-1} ; \frac{\mathrm{x}+2}{-1}=\frac{2-\mathrm{y}}{-\mathrm{k}}=\frac{\mathrm{z}}{5}$	
20.	Find the image of the point $(1,6,3)$ in the line $\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3} . \quad$ Ans: $(1,0,7)$	
21.	Case study based: The equation of motion of a missile are $\mathrm{x}=3 \mathrm{t}, \mathrm{y}=-4 \mathrm{t}, \mathrm{z}=\mathrm{t}$, where the time ' t ' is given in seconds, and the distance is measured in kilometers. Based on the above answer the following: i) What is the path of the missile? ii) At what distance will the rocket be from the starting point ($0,0,0$) in 5 seconds? iii) If the position of rocket at a certain instant of time is $(5,-8,10)$, then what will be the height of the rocket from the ground? (The ground is considered as the $x y$ - plane).	Ans: i) straight line ii) $\sqrt{650} \mathrm{Km}$ iii) 10 km

