

INDIAN SCHOOL AL WADI AL KABIR

Worksheet- Vectors and Three-Dimensional Geometry Grade: XII 18th Octo

		Grade: XII	1	8 th October 2023
1.	If a line makes angles α , β , γ with the positive direction of coordinate axes, then write the value of $cos2\alpha + cos2\beta + cos2\gamma$. Ans: -1			
2.	Find the angle between the lines $2x = 3y = -z$ and $6x = -y = -4z$. Ans: $\frac{\pi}{2}$			
3.	Write the coordinates of the point which is the reflection of the point ((α, β, γ) in the XZ plane. Ans: ($\alpha, -\beta, \gamma$)			
4.	Find the equation of the line passing through origin and $(3, -4, 2)$. Ans: $\frac{x}{3} = \frac{y}{-4} = \frac{z}{2} = 1$			
5.	If \vec{a} and \vec{b} are unit vectors, then what is the angle between \vec{a} and \vec{b} for which $\vec{a} - \sqrt{2} \vec{b}$. Ans: $\frac{\pi}{4}$			
6.	Write the unit vector along the sum of vectors $(2\hat{i} + \hat{j} - 2\hat{k})$ and $\hat{j} + \hat{k}$ on the three axes. Ans: $\frac{1}{3}(2\hat{i} + 2\hat{j} - \hat{k})$			
7.	The scalar product of the vectors $\hat{i} + \hat{j} + \hat{k}$ with a unit vector along the sum of the vectors $2\hat{i} + 4\hat{j} - 5\hat{k}$ and $\lambda\hat{i} + 2\hat{j} + 3\hat{k}$ is equal to 1. Find the value of λ . Ans: 1			
8.	If $\vec{a} \neq 0$, $\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}$ and $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$, then show that $\vec{b} = \vec{c}$			
9.	Find λ when the projection of $\vec{a} = \lambda \hat{i} + \hat{j} + 4\hat{k}$ on $\vec{b} = 2\hat{i} + 6\hat{j} + 3\hat{k}$ is 4 units. Ans: 5			
10.	Show that the four points A(4, 5, 1), B(0, -1, -1), C(3, 9, 4) and D(-4, 4, 4) are coplanar.			
11.	The x coordinate of a point Q on the line joining the points P (2, 2, 1) and R(5, 1, -2) is 4. Find its z coordinate. Ans1			
12.	Find the value of λ so that the four points A, B, C and D with position vectors			
	$4\hat{i} + 5\hat{j} + \hat{k}$, $-\hat{j} - \hat{k}$, $3\hat{i} + \lambda\hat{j} + 4\hat{k}$ and $-4\hat{i} + 4\hat{j} + 4\hat{k}$ respectively are coplanar.			
	Ans: 9			
13.	Let $\vec{a} = \hat{\imath} + 4\hat{\jmath} + 2\hat{k}$, $\vec{b} = 3\hat{\imath} - 2\hat{\jmath} + 7\hat{k}$ and $\vec{c} = 2\hat{\imath} - \hat{\jmath} + 4\hat{k}$. Find a vector \vec{d} which is perpendicular to both \vec{a} and \vec{b} and $\vec{c} \cdot \vec{d} = 15$. Ans: $\vec{d} = \left(\frac{5}{3}\right)\left(32\hat{\imath} - \hat{\jmath} - 14\hat{k}\right)$.			
14.	Two adjacent sides of a parallelogram are $\hat{2i} - 4\hat{j} - 5\hat{k}$ and $\hat{2i}+2\hat{j}+3\hat{k}$. Find the two unit vectors parallel to its diagonals. Using diagonal vectors find the area of the parallelogram. Ans: $2\sqrt{101}$			
15.	Find the angle between the vectors $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$ if $\vec{a} = 2\hat{\imath}-\hat{\jmath}+3\hat{k}$ and $\vec{b} = 3\hat{\imath}+\hat{\jmath}-2\hat{k}$ and hence find a vector perpendicular to both $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$. Ans: $\frac{\pi}{2}$, $2\hat{\imath}-26\hat{\jmath}-10\hat{k}$			

16.	Find the shortest distance between the lines: $\vec{r} = (\hat{i} + 2\hat{j} + \hat{k}) + \lambda(\hat{i} - \hat{j} + \hat{k})$ and				
	$\vec{r} = (2\hat{i} - \hat{j} - \hat{k}) + \mu(2\hat{i} + \hat{j} + 2\hat{k})$ Shortest distance = $\left \frac{-9}{3\sqrt{2}}\right = \frac{3\sqrt{2}}{2}$				
17.	Find the shortest distance between the following lines :				
	$\overrightarrow{\mathbf{r}} = (\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}}) + \lambda (2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + 4\hat{\mathbf{k}})$				
	$\vec{r} = (2\hat{i} + 4\hat{j} + 5\hat{k}) + \mu(4\hat{i} + 6\hat{j} + 8\hat{k}) \qquad \frac{\sqrt{145}}{29}$				
18.	Find the vector and cartesian equations of a line through the point (1, -1, 1) and perpendicular to the lines joining the points (4, 3, 2), (1, -1, 0) and (1, 2, -1), (2, 1, 1). $\sum_{k=1}^{x-1} = \frac{y+1}{-4} = \frac{z-1}{-7}, \vec{r} = (\hat{i} - \hat{j} + \hat{k}) + \lambda (10\hat{i} - 4\hat{j} - 7\hat{k})$				
19.	Find the value of k if the following lines are perpendicular: $\frac{x+3}{k-5} = \frac{y-1}{1} = \frac{5-z}{-2k-1}; \frac{x+2}{-1} = \frac{2-y}{-k} = \frac{z}{5}.$ Ans: k= -1				
20.	Find the image of the point (1, 6, 3) in the line $\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3}$. Ans: (1, 0, 7)				
21.	Case study based: The equation of motion of a missile are x = 3t, y = -4t, z = t, where the time 't' is given in seconds, and the distance is measured in kilometers. Based on the above answer the following: i) What is the path of the missile? ii) At what distance will the rocket be from the starting point (0, 0, 0) in 5 seconds? iii) If the position of rocket at a certain instant of time is (5, -8, 10), then what will be the height of the rocket from the ground? (The ground is considered as the xy – plane). Case study based: The equation of motion of a missile are is given in the starting point (0, 0, 0) in 5 seconds? iii) At what distance will the rocket at a certain instant of time is (5, -8, 10), then what will be the height of the rocket from the ground? (The ground is considered as the xy – plane).				
